
Supplement 1  

A Brief Introduction to Reconstruction Algorithms 

1. Differential Ghost Imaging (DGI) Algorithm  

Differential Ghost Imaging (DGI)1 is an enhanced ghost imaging technique aimed 

at improving the Signal-to-Noise Ratio (SNR) and reconstruction quality of Single-

Pixel Imaging (SPI) by considering the fluctuations in illumination intensity. In 

traditional ghost imaging, the correlation between the target scene and illumination 

light fields is used to reconstruct the image, which is susceptible to changes in 

illumination intensity. DGI corrects for these variations by introducing the total 

intensity of each illumination light field. 

The core of the DGI algorithm lies in normalizing the illumination intensity 

fluctuations' impact on the reconstructed image. Its reconstruction formula is:  
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, where x represents the target scene, b is the measured value, ai is the i-th illumination 

light field, si is the total intensity of the i-th illumination light field, and <·> denotes the 

average over all light fields. 

DGI is a non-iterative method that directly obtains the reconstructed image through 

correlation calculations, with low computational complexity, suitable for real-time 

imaging systems. By normalization, DGI exhibits strong robustness to noise, capable 

of resisting environmental light interference and circuit noise to a certain extent. The 

implementation process of DGI is relatively straightforward, without the need for 

complex iterative optimization processes. 



DGI is suitable for single-pixel imaging systems that require high real-time 

performance and noise robustness, such as target imaging in scenarios with significant 

environmental light interference. 

2. Total Variation Based Compressive Sensing (CS-TV) Algorithm 

The TV-based CS algorithm (CS-TV)2 is a nonlinear iterative reconstruction 

method for SPI that incorporates sparsity priors of natural images and employs TV 

regularization to reconstruct signals from underdetermined linear systems. The TV 

regularization assumes that the gradient integral of natural images is statistically low, 

indicating sparse edge information. By introducing TV regularization, this algorithm 

enables high-quality image reconstruction with fewer measurements, thus enhancing 

the acquisition efficiency of SPI systems. 

The optimization model for CS-TV is: min ∥c∥1 subject to Gx=c, Ax=b, where ∥c∥1 

denotes the l1 norm of c, approximating the sparsity of c; G is the gradient calculation 

matrix for computing the total variation of the image; x is the target scene, A is the 

illumination light fields matrix, and b is the measurement vector. With the introduction 

of Lagrange multipliers and balancing parameters, this optimization problem can be 

solved under a gradient descent framework, involving iterative updates of c, x, 

Lagrange multipliers, and balancing parameters. 

The CS-TV algorithm achieves high-quality image reconstruction with fewer 

measurements, significantly improving the acquisition efficiency of SPI systems. The 

TV regularization term has some noise suppression effect, allowing the algorithm to 

maintain good reconstruction performance in the presence of measurement noise. As a 



nonlinear iterative method, the CS-TV algorithm has relatively high computational 

complexity, especially for large-scale image reconstruction. 

The CS-TV algorithm is suitable for SPI systems that require high acquisition 

efficiency, such as scenarios where reducing the number of measurements is needed to 

increase imaging speed or decrease system complexity. 

3. Untrained Deep Neural Network (UNN) Algorithm 

The Untrained Neural Network (UNN)3 embeds physical models into deep neural 

networks, leveraging the network's optimization capabilities to automatically adjust 

parameters for high-quality image reconstruction without extensive pre-training of 

datasets. This approach exhibits strong generalization and robustness in low sampling 

rates and high noise levels. 

The UNN typically employs the classic U-Net structure, comprising an encoder and 

decoder with skip connections to transmit and compensate for information. U-Net 

effectively extracts image features and restores resolution during decoding. To further 

enhance image quality, some improved UNN methods incorporate attention 

mechanisms to efficiently highlight main features and suppress noise. 

In UNN, the GI physical model is integrated into the network's output layer. 

Specifically, the network's output is correlated with known illumination light fields to 

estimate measurement values. Then, the difference between actual and estimated 

measurements (loss function) is used to optimize network parameters via 

backpropagation. The UNN's loss function usually includes two parts: the error between 

measurements and the regularization term (e.g., total variation regularization). By 



minimizing the loss function, the network gradually optimizes parameters to improve 

reconstructed image quality. Typically, the Adam optimizer is used with dynamic 

learning rate strategies to accelerate network convergence. 

The UNN does not require extensive pre-training of datasets, significantly saving 

time and resources, enhancing the algorithm's applicability and flexibility. Since the 

UNN directly utilizes physical models for optimization, it has good generalization 

ability across different imaging scenarios and noise levels, adapting to complex real-

world applications. By introducing attention mechanisms and total variation 

regularization constraints, the UNN effectively suppresses noise, improving signal-to-

noise ratio (SNR), thus achieving high-quality image reconstruction at low sampling 

rates and high noise levels. The UNN can reconstruct high-quality images at low 

sampling ratios (e.g., below 10%), significantly outperforming traditional DGI and CS-

TV methods. 

4. Reconstruction time comparison among different algorithms 

 DGI CS-TV UNN 

Digit 2 0.0863 s 5.59 s 52.5 s 

The computation was performed on a PC. CPU: AMD Ryzen 7 4800U; GPU: AMD 

Radeon(TM) Graphics 


